Fuel control treatments: Dealing with differences among sites

Bruce A. Roundy, Brigham Young University

Great Basin Landscape Conservation Cooperative

SageSTEP Associates

- Jeanne Chambers
- Dave Pyke
- Rick Miller
- Robin Tausch
- Eugene Schupp UtahState
- Paul Doescher
- Ben Rau
- Trevor Gruell
- Jim Mclver

≝USGS

FUNDED BY:

The Problem:

Fuels are controlled to suppress high-severity fire, but fuel control may result in weed dominance

The Regional SageSTEP Experiment

- Wyoming big sagebrush
 - 6 sites
 - 4 woody fuel treatments
 - Untreated
 - Fire
 - Mow
 - Tebuthiuron
 - 2 herbaceous treatments
 - No imazapic
 - Imazapic
- Woodland expansion
 - 11 sites
 - 3-4 fuel treatments
 - Untreated
 - Fire
 - Mechanical (cut; masticate Utah only)

Soil temperature and available water stations

- 17 sites; 178 stations
- 4-5 treatments
- Sagebrush: Low and high p. grass
- Woodland: 3 expansion phases
- 4 microsites
- 6 depths: 4 upper 30 cm; 50, 65 cm
- Hourly averages
- 29 derived seasonal variables

SageSTEP Results

- Sagebrush
 - Pyke et al. 2014: 1-3 years
 - Chambers et al. 2014: 3-4 years
 - Rau et al. 2014: 3 years

• Woodland

- Miller et al. 2014: 1-3 years
- Roundy et al. 2014 a, b: 2-3 years
- Chambers et al. 2014: 3-4 years
- Young et al. 2013, 2014, 2015: 1-3 years
- Bybee et al. 2016: 5-6 years
- Williams et al. 2017:3, 6 years

Sagebrush	Woody fuels	P. grass	Cheatgrass	
Fire	-	- then =	Variable	
Mow	-	Same	Variable	
Tebuthiuron	Same	Same	Same	
Imazapic		-	-	

- Treatments increased available nutrients
- Drier and sandier sites had more cheatgrass

Woodland	Woody fuels	P. grass	Cheatgrass
Fire	-	- then +	+
Cut/Shred	Location, size	+	Variable

Higher pretreatment tree dominance:

- Increased woody fuels
- Decreased understory
- Increased post-treatment available nutrients, soil water
- Increased post treatment cheatgrass

Perennial grasses resist cheatgrass, but varies

Cheatgrass-perennial herbs vary with site, scale

Resilience and Resistance

Pyke et al. 2015 after Chambers et al. 2013, 2014

Warm-Dry Cold-Mois Elevation Productivity

Resilience to Disturbance and Resistance to Invasions by Annual Grasses in Sagebrush Steppe Ecosystems

Warmer sites with more cheatgrass before treatment had more cheatgrass after treatment

- Fundamental niche
 - Adaptation to environment
- Realized niche
 - Distribution, abundance
 as affected by competition
 for resources

Treatments affect plants and environment

Treatment effects on environment

- Increased soil water availability
- Increased soil temperature
- Soil water repellency
- Nutrient availability

Shredding increased:

Young et al. 2013, 2014

• Time of soil water availability and temperatures

Seedling biomass

What explains site differences?

Gradients in cheatgrass and perennial herb cover associated with soil temperature and moisture

Sagebrush sites

Woodland sites

More cheatgrass cover if:

More perennial herbaceous cover if:

Seasonal soil temperature/water effects

	Effects o	Resistance to	
Seasonal climatic conditions	Perennial herbs	Cheatgrass	cheatgrass
Wetter winters and early springs	+		
Cooler springs, cool, dry falls		-	Highest
Warm late springs, warm, wet falls		+	Intermediate
Drier winters and early springs	-		
Cooler springs, cool, dry falls		-	Intermediate
Warm late springs, warm, wet falls		+	Lowest

Climate and ecology of cheatgrass

- Warmer = more cheatgrass if soil water is available
- More summer rain = less cheatgrass as p. grass favored
- Cheatgrass best adapted to fall, winter, spring precipitation, with dry summers
- Spring, summer, annual precip and winter temperature best predictors
- Best adapted to Wyoming big sagebrush ecosystem

- Germinates with fall rains, most springs
- High seed production limited by cooler temperatures
- Highly variable germination, growth on climatically-marginal areas
- Dominance highly dependent on disturbance: Fire cycles
- Flexible response to nutrients/water/temperature

What are the predictions with global climate change?

Springer Series on Environmental Management

Matthew J. Germino Jeanne C. Chambers Cynthia S. Brown *Editors*

Exotic Brome-Grasses in Arid and Semiarid Ecosystems of the Western US

Causes, Consequences, and Management Implications

Deringer

Fig. 9.2 Climatic suitability for high abundance (>25 % cover) of *B. tectorum* in the Intermountain West with varying summer precipitation, specifically (**a**) current, average climate conditions, (**b**) a 25 % loss of average summer precipitation, or (**c**) a 50 % loss of average summer precipitation. *White* remains unsuitable, *light blue* becomes unsuitable, *medium gray* remains suitable, and *dark red* gains suitability for *B. tectorum*

Bradley et al. 2016

- Cheatgrass expands where summer soil moisture decreases
- Cheatgrass dominance will increase within its range of adaptation
- With warming, cheatgrass may dominate more at higher elevations
- Drier/warmer = more cheatgrass/fire prone

How to increase resistance and resilience of sagebrush steppe systems? *Maximize perennial grass cover by:*

- Manage grazing for rest or lightmoderate use in growing season
- Wyoming sagebrush
 - Herbicide or mechanical/seed
 - Fire rehab seedings: cover seed
- Expansion woodlands
 - Cut/shred to reduce woodland fuels at Phase I and II
 - Seed/shred woodlands if reducing fuels at Phase III or with high potential cheatgrass
 - Fire rehab seedings: cover seed

Sagebrush renovation

Sagebrush Rabbitbrush Seeded grass Residual grass Perennial forb

Masticate at early expansion to best grow perennial grasses and retain shrubs

Winning the understory battle

Management and restoration guidebooks

Promising technologies

Biocontrol

Seed coating- Madsen et al.

- Deactivate herbicides
- Reduce water repellency
- Deter seed predation
- Delay or speed up germination to increase seedling survival

Conclusions

- Sites vary in potential for perennial herbaceous and cheatgrass cover
- Cheatgrass most adapted to Wyoming big sagebrush and many tree-expanded sites
- Maintain resistance and resilience by maximizing desirable perennial herbaceous cover
- Grazing management
- Restoration
 - Traditional fire/ herbicide/mechanical/revegetation
 - Properly timed mechanical tree control or include revegetation
 - Follow principles of revegetation in fire rehab

